

Quality Assurance and Accreditation in Higher Education

A. S. M. A. Haseeb Nanomaterials ad Ceramic Engineering Dept., BUET, Dhaka

Why quality assurance in higher education ?

- Maintain standards
- Accountability
- Competition
- Credibility, prestige and status
- Image and visibility
- Customer satisfaction
- Improve employee morale and motivation

National Assessment and Accreditation Council

United Nations Educational, Scientific and Cultural Organization	Higher Education Matters
 Student numbers are exploding around the world, as there has never been a greater need for a good tertiary education. Emerging economies will have around 63 million more university students in 2025 and the number worldwide is expected to more than double to 262 million by the same year 	 Global student population 1900: 0,5 mill. 1950: 6,3 mill. 1970: 28,6 mill. 2000: 99,5 mill.

https://worldpopulationreview.com/country-rankings/mast-educated-countries					
	Ranking	55-64 year- olds	%	25-34 year- olds	%
	1	<u>Russia</u>	50.3	South Korea	69.8
	2	Canada	50.0	Canada	64.4
• Percentage of Citizens	3	Israel	46.1	Russia	62.1
Who Have Completed	4	Japan	44.5	Japan	61.5
Generation) - OECD 2021	5	United States	44.3	Ireland	58.4
	6	Finland	42.9	Luxembourg	58.2
	7	United Kingdom	39.4	<u>Lithuania</u>	56.2
	8	<u>Estonia</u>	39.2	United Kingdom	55.8
	9	Australia	36.3	Australia	54.6
	10	Switzerland	34.7	Switzerland	53.0

Quality Assurance of Higher Education Through **Accreditation**

"...the process of reviewing colleges, universities, institutions and programs to judge their educational quality – how well they serve students and society..."

Council for Higher Education Accreditation (CHEA) Assures that a neutral, external party (accrediting organization) has reviewed the quality of education provided and has found it to be satisfactory, based upon appropriate peer expertise.

Accreditation of higher education is both an old a new phenomenon

- Higher education accreditation in the United States begun in 1880s
- Currently more than 50 accreditation organizations under US Department of Education and CHEA
- Accreditation bodies in the US are decentralized
- 1. Regional accreditation
- 2. National accreditation
- 3. Specialized and professional accreditation
- 4. Religious accreditation

Accreditatio	n of Engineering Education
US 1932	 Accreditation Board for Engineering and Technology (ABET) 1932 → Engineers' Council for Professional Development (ECPD)
France 1934	 Commission des Titres d'Ingénieur (CTI) Engineering Degree Commission 1934 → one of the first, accreditation boards in France and Europe
UK 1964	 The Engineering Council UK (EC^{UK}) 1964 → Joint Council of Engineering Institutions
sech NCE Dent _ RUET	

- Korea <u>(2007)</u>
- Russia (2012)
- Malaysia (2009)
- China (2016)
- South Africa (1999)
- New Zealand (1989)
- Australia <u>(1989)</u>
- Canada -<u>(1989)</u>
- Ireland (1989)
- Hong Kong China (1995)
- Chinese Taipei (2007)

• Singapore - (2006)

- Sri Lanka (2014)
 Japan (2005)
- India (2014)
- United States (1989)

ABET: Accreditation

and Technology

Board for Engineering

- Turkey (2011)
- United Kingdom (1989)
- Costa Rica (2020)
- Mexico (2022)
- Pakistan (2017)
- Peru <u>(2018)</u>
- Indonesia (2022)

https://ir.mit.edu/a	bet-enrollme	nts													
4 1	Inst	itutiona ce of the	l Rese e Prove	arch ost			Surveys	Data 🗸	 Requi 	ests Ran	kings N	lews Ab	out	Phi	
				A	BETE	NRO	LLME	NTS							
		ι	Jndergrad	luate E	nrollm	nent in	I ABET	'-accre	dited	progra	ms				
	Undergraduat	e Enrollment i	in ABET-ac	credite	ed prog	grams									
	Department Name	Decessor	atudantuan	2015	2016	2017	Aca	demic Year	2020	2021	2022	2022			
	Department Name	Program	student yea	2015	2010	2017	2010	2015	2020		2022	2023			
		Chemical-Biologica	1 2	19	18	27	14	14	18	13	21	12			
		Engineering, Cours	e 3	23	21	18	26	12	14	16	13	18			
		108	4	23	21	19	12	23	10	16	14	14			
															-
			5			2	1	2		2	2	4			
	Electrical Eng &	Electrical Science	2	27	25	13	19	25	10	16	16	13			
	Computer Sci	and Engineering,	3	27	31	28	12	22	25	8	13	11			
		CO0126 0-T	4	21	28	31	22	11	20	21	9	12			
		Electrical	5	3	2	6	6	3	1	8	5	4			
		Electrical Engineering and	2	184	160	159	127	132	124	119	98	116			
		Computer Science,	4	143	102	123	141	128	123	97	143	94			
		Course 6-2	5	11	12	123	6	9	6	10	7	7			
		Computer Science	2	170	188	216	258	210	216	234	223	263			
		and Engineering,	3	175	206	204	257	280	243	250	266	251			
A. S. M. A. F		Course 6-3	4	139	190	229	228	266	255	238	226	243			

	General	Specialized,
		Programme Based
Bangladesh	BAC	BAETE
Malaysia	Malaysian Qualification Agency	Engineering Accreditation Council
US	Many	ABET

A. S. M. A. Haseeb Nanomaterials ad Ceramic Engineering Dept., BUET, Dhaka

International Engineering Alliance:

Umbrella organization of international engineering societies/bodies

- Deals with both <u>engineering education</u> and <u>engineering practice</u>
- Covers whole spectrum of engineering → all levels: Engineers, Technologists, Technicians

As for engineering education:

IEA establishes & enforces internationally-benchmarked standards \rightarrow "entry level" competence to practise engineering

Difference among Engineers, Technologists and Technicians In term of Problem Analysis					
Engineers (Washington Accord)	Technologists (Sydney Accord)	Technicians (Dublin Accord)			
Identify, formulate, research literature and solve <u>complex</u> <u>engineering problems</u> reaching substantiated conclusions using <u>first</u> <u>principles of</u> <u>mathematics and</u> <u>engineering sciences</u>	Identify, formulate, research literature and solve <u>broadly-defined</u> <u>engineering problems</u> reaching substantiated conclusions using analytical tools appropriate to their discipline or area of specialization	Identify and solve <u>well-</u> <u>defined engineering</u> <u>problems</u> reaching substantiated conclusions using codified methods of analysis specific to their field of activity			

Difference among Engineers, Technologists and Technicians...

Engineers	Technologists	Technicians
Solve	Solve	Solve
Complex	Broadly-defined	Well-defined
Problems	Problems	Problems
Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models	Can be solved by well- proven analysis techniques	Can be solved in standardized ways

Graduate Attributes			
Engineering WA1 knowledge	WA1: Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialisation as specified in WK1 to WK4 respectively to the solution of complex engineering problems.		
WA2 Problem analysis	WA2: Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences (WK1 to WK4).		
WA3 Design/ development of solutions	WA3: Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health, and safety, cultural, societal and environmental considerations (WK5).		

Graduate Attributes, contd.			
WA4 Investigation	WA4: Conduct investigations of complex problems using research-based knowledge (WK8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.		
WA5 Modern tool usage	WA5: Create, select and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limi- tations (WK6).		
WA6 The engineer and society	WA6: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems (WK7).		

	Graduate Attributes, contd.
WA7 Environment and sustainability	WA7: Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts (WK7).
Ethics WA8	WA8: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice (WK7).
Individual WA9 and teamwork	WA9: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
WA10 Communication	WA10: Communicate effectively on complex engineering activities with the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.

Project WA11 management and finance	WA11: Demonstrate knowledge and understanding of engineering manage- ment principles and economic decision-making and apply these to one's own work as a member and leader in a team, to manage projects and in multi-disciplinary environments.
WA12 Life-long learning	WA12: Recognise the need for, and have the preparation and ability to engage in, independent and life-long learning in the broadest context of technological change.

Knowledge Profile

No.	Knowledge Profile (WK)	Characteristics
WKI	Natural sciences	Systematic theory based understanding of the natural sciences applicable to the discipline.
WK2	Mathematics	Conceptually based mathematic, numerical analysis, statistic and formal aspects of computer and information science to support analysis and modelling applicable to the discipline.
WK3	Engineering fundamentals	A systematic, theory based formulation of engineering fundamental required in the engineering discipline.
WK4	Specialist knowledge	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.

No.	Knowledge Profile (WK)	Characteristics
WK5	Engineering design	Knowledge that supports engineering design in a practice area.
WK6	Engineering practice	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
WK7	Comprehension	Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the professional responsibility of an engineer to public safety; the impacts of engineering activity: economic, social, cultural, environmental and sustainability.
WK8	Research literature	Engagement with selected knowledge in the research literature of the discipline.

Attribute	es of complex engineering problems
Depth of knowledge WP1 required	WP1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of WK3, WK4, WK5, WK6 or WK8 which allows a fundamentals-based, first principles analytical approach.
Range of conflicting WP2 requirements	WP2: Involve wide-ranging or conflicting technical, engineering and other issues.
WP3 Depth of analysis required	WP3: Have no obvious solution and require abstract thinking and originality in analysis to formulate suitable models.
Familiarity of issues WP4	WP4: Involve infrequently encountered issues.

Cor	nplex engineering problems, contd.
WP5 Extent of applicable codes	WP5: Outside problems encompassed by standards and codes of practice for professional engineering.
Extent of stakeholder WP6 involvement and needs	WP6: Involve diverse groups of stakeholders with widely varying needs.
Interdependence WP7	WP 7: High level problems including many component parts or sub-problems.
A.S.M.A.Haseeb.NCEDent_BLIET	24

Attributes of complex engineering activities

EA1 Range of resources	EA1: Involve the use of diverse resources (and for this purpose resources include people, money, equipment, materials, information and technologies).
EA2 Level of interactions	EA2: Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues.
Innovation EA3	EA3: Involve creative use of engineering principles and research-based knowledge in novel ways.
Consequences to society EA4 and the environment	EA4: Have significant consequences in a range of contexts, characterised by difficulty of prediction and mitigation.
Familiarity EA5	EA5: Can extend beyond previous experiences by applying principles-based approaches.
seeh NCE Dent BUET	

Essentials of OBE Based Curriculum Design as per WA

A. S. M. A. Haseeb Nanomaterials ad Ceramic Engineering Dept., BUET, Dhaka

Programme Educational Objectives (PEO)

Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve (3-5 years after graduation)

Programme Outcomes (PO)

Program outcomes are narrower statements that describe what students are expected to know and be able to do by the time of graduation. These relate to the skills, knowledge, and behaviors the

<u>time of graduation</u>. These relate to the skills, knowledge, and behaviors that students acquire in their matriculation through the program.

Course Outcomes (CO)

Course outcomes are even narrower statements that describe what students are expected to know and be able to do at the *end of the course*

Terminology

Programme Educational Objectives (PEO) Programme Objectives

Programme Outcomes (PO) Student Outcomes Programme Learning Outcomes

Course Outcomes (CO) Learning Outcomes

PROGRAM OUTCOMES (PO) contd	f)	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. (K7)
	g)	Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts. (K7)
	h)	Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (K7)
	i)	Function effectively as an individual, and as a member or leader in diverse teams and in multi- disciplinary settings.
	j)	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
	k)	Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
	I)	Recognize the need for, and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change
A. S. M. A. Haseeb. NCE Dent., BUET		
9		

	 Outcome-Based Education (OBE): a means to ensure quality in the American school system
	 Eventually, OBE was extended to higher education system
William G. Spady, 1994	• 'OBE means focusing and organizing an institute's entire programmes and instructional efforts around clearly defined outcomes we want all students to demonstrate when they leave the institute'
.A. S. M. A. Hoseeb. NCE Dent. BUFT	 OBE is a system of education giving priority to ends, purposes, accomplishments and results.

- Courses become congruent and coherent in an explicit way: good fit and flow between learning outcomes, learning activities and assessment
- Support students in developing as much meaning and learning as possible from a <u>well designed, coherent, and aligned</u> <u>course</u>.

Benefits constructive alignment

- Leads students to success both in assessments and to achievement of learning outcomes
- Helps students to feel confident in their work, their engagement and their study
- Ensures that "learner cannot escape without learning what is intended" (Biggs, 2003).

(The Univ. of Queensland)

	Guide for Constructive Alignment
1. Write course outcomes (COs) that are:	a. relevant b. concrete and achievable, and c. simple and active − with <mark>one verb in each</mark>
2. Create learning activities that require students to engage each verb in the COs	 a. practical COs require practical activities (ability to dox,y,z) b. COs about facts require activities recalling facts (ability to name/recall facts x,y,z) c. COs about integration/application of knowledge in practice require activities that involve application of knowledge in practice (ability to apply theory in practice) d. COs about reasoning require opportunities to practice reasoning, etc. (ability to problem-solve/analyse/diagnoseetc)
3. Design assessment tasks and types that:	 a. match, mirror or emulate the COs and their associated verbs b. can be assessed using rubrics for grading performance criteria and standards (Biggs, 2014, p. 8).
	https://pressbooks.pub/flexforward/chapter/constructive-alignment/

Student Centered Learning

- Problem Based Learning
- Case Study
- Project-based learning
- Flipped Classroom
- Cooperative learning
- Experiential learning
- Peer-to-peer Instruction
- Scenario based learning
 - ••••
 - ...

Outcome	students are able to run a marathon	• Surely students will focus on memorizing
Teaching activities	formal lectures comprising an overview of various running disciplines	names of marathon winners rather than on training for a marathon
Exam	multiple choice questions about Olympic marathon winners	• The course then defeats its purpose !

"Outcome-based education means starting with a clear picture of what is important for <u>students to be able to</u> <u>do</u>, then organising the <u>curriculum</u>, <u>instruction</u>, and <u>assessment</u> to **make sure** that this <u>learning ultimately</u> <u>happens</u>." (Spady, 1994)

Implementation of Outcome Based Education

A. S. M. A. Haseeb Nanomaterials ad Ceramic Engineering Dept., BUET, Dhaka

Implementation of OBE

- Formulate PEO, PO, CO
- Prepare CO-PO matrix → make sure that each PO is covered in at least a few courses
- Questions should be designed to address all CO
- Analyse the course results in terms of CO → set indicator for achievement, then check if the target is achieved
- End of semester → analyze CO, PO achievement for each cohort or batch, and each student
- End of graduation semester → analyze all CO, PO achievements for each cohort or batch, and each student
- Achievement of $PEO \rightarrow a$ few years after graduation

EVERYTHING MUST BE DOCUMENTED → For independent verification

In term of Problem Analysis			
Engineers (Washington Accord)	Technologists (Sydney Accord)	Technicians (Dublin Accord)	
Identify, formulate, research literature and solve <u>complex</u> engineering problems reaching substantiated conclusions using <i>first</i> <i>principles of mathematics</i> <i>and engineering sciences</i>	Identify, formulate, research literature and solve broadly-defined engineering problems reaching substantiated conclusions using analytical tools appropriate to their discipline or area of specialisation	Identify and solve well-defined engineering problems reaching substantiated conclusions using codified methods of analysis specific to their field of activity	

Difference among Engineers, Technologists and Technicians...

Engineers	Technologists	Technicians
Solve	Solve	Solve
Complex	Broadly-defined	Well-defined
Problems	Problems	Problems
Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models	Can be solved by well- proven analysis techniques	Can be solved in standardized ways

- **1.** Cognitive domain: intellectual capability, knowledge \rightarrow <u>'think'</u>
- 2. Affective domain: feelings emotions and behaviour, i.e., attitude, belief $\rightarrow \frac{'feel'}{}$
- 3. Psychomotor domain: manual and physical skills i.e., skills $\rightarrow \underline{'do'}$

Cognitive domain			
Intellect - Knowledge - Thinking Ability			
LEVEL	ORIGINAL (Blooms 1956)	REVISED (Anderson 2001)	
1	KNOWLEDGE	REMEMBERING	
2	COMPREHENSION	UNDERSTANDING	
3	APPLICATION	APPLYING	
4	ANALYSIS	ANALYSING	
5	SYNTHESIS	EVALUATING	
6	EVALUATION	CREATING / DESIGNING	

COGNITIVE DOMAIN				
level	category or 'level'	behaviour descriptions	examples of activity to be trained, or demonstration and evidence to be measured	'key words' (verbs which describe the activity to be trained or measured at each level)
1	Knowledge (REMEMBERING)	recall or recognise information	multiple-choice test, recount facts or statistics, recall a process, rules, definitions; quote	arrange, define, describe, label, list, memorise, recognise, relate, reproduce,
			law or procedure	select, state
2	Comprehension (UNDERSTANDING)	understand meaning, re-state data in one's own words, interpret, extrapolate, translate	explain or interpret meaning from a given scenario or statement, suggest treatment, reaction or solution to given problem, create examples or metaphors	explain, reiterate, reworr critique, classify, summaris- illustrate, translate, review report, discuss, re-writ estimate, interpret, theoris- paraphrase, reference, example

3	Application (APPLYING)	use or apply knowledge, put theory into practice, use knowledge in response to real circumstances	put a theory into practical effect, demonstrate, solve a problem, manage an activity	use, apply, discover, manage execute, solve, produce implement, construct, change prepare, conduct, perform react, respond, role-play
4	Analysis (ANALYSING)	interpret clements, organizational principles, structure, construction, internal relationships; quality, reliability of individual components	identify constituent parts and functions of a process or concept, or de-construct a methodology or process, making qualitative assessment of elements, relationships, values and effects; measure	analyse, break down catalogue, compare, quantify measure, test, examine experiment, relate, graph, diagram, plot, extrapolate value, divide
			requirements or needs	
5 (6)	Synthesis (create/build) (CREATING/ DESIGNING)	develop new unique structures, systems, models, approaches, ideas; creative thinking, operations	develop plans or procedures, design solutions, integrate methods, resources, ideas, parts; create teams or new approaches, write protocols or contingencies	develop, plan, build, create design, organise, revise formulate, propose, establish assemble, integrate, re- arrange, modify

6 (5)	Evaluation (EVALUATING)	assess effectiveness of whole concepts, in relation to values, outputs, efficacy, viability; critical thinking, strategic comparison and review; judgement relating to external criteria	review strategic options or plans in terms of efficacy, return on investment or cost- effectiveness, practicability, assess sustainability, perform a <u>SWOT</u> analysis in relation to alternatives; produce a financial justification for a proposition or venture, calculate the effects of a plan or strategy, perform a detailed and costed risk analysis with recommendations and justifications	review, justify, assess, present a case for, defend, report on, investigate, direct, appraise, argue, project-manage
-------	----------------------------	--	--	---

LEVEL	DESCRIPTION	EXAMPLE 1 (Cartoon Character)
1	REMEMBERING	List down (as many as you wish) cartoon character that you watch on TV
2	UNDERSTANDING	Select one cartoon charater that you like most and describe its character. Use sketch if necessary
3	APPLYING	Explain how these characters can help you in real life
4	ANALYSING	Choose three cartoon character that you like most and study the similarities, differences, strengths and weakness
5	EVALUATING	Out of three above, which one (in your opinion) is the best character and explain the reasons behind you selection
6	CREATING / DESIGNING	Based on the cartoon characters that you have watched, create a new cartoon character (sketch) and describe its features and main characters

Example of Cognitive Levels

LEVEL	DESCRIPTION	EXAMPLE 2 (Shipyard Location and Layout)
1	REMEMBERING	List down five characteristics for selecting shipyard location / Three characteristics of a good shipyard layout
2	UNDERSTANDING	Briefly explain one of the characteristics listed above. Use sketch if necessary
3	APPLYING	Based on the characteristics of shipyard location above, prepare a survey work to be carried out on the selected location
4	ANALYSING	Based on the data collected from several potential locations, analyse the strength and weaknesses of each location.
5	EVALUATING	Based on the analysis above, make your judgment on which location to be selected
6	CREATING / DESIGNING	Based on the characteristics of a good shipyard layout, and the given piece of land (map), propose a suitable layout for a medium size steel ship.

Antinu	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Action	Define	Choose	Apply	Analyze	Arrange	Appraise
word for each	Identify	Cite examples of	Demonstrate	Appraise	Assemble	Assess
Cognitivo	List	Demonstrate use	Dramatize	Calculate	Collect	Choose
Cognitive	Name	of	Employ	Categorize	Compose	Compare
Levels	Recall	Describe	Generalize	Compare	Construct	Critique
	Recognize	Determine	Illustrate	Conclude	Create	Estimate
	Record	Differentiate	Interpret	Contrast	Design	Evaluate
	Relate	between	Operate	Correlate	Develop	Judge
	Repeat	Discriminate	Operationalize	Criticize	Formulate	Measure
	Underline	Discuss	Practice	Deduce	Manage	Rate
		Explain	Relate	Debate	Modify	Revise
		Express	Schedule	Detect	Organize	Score
		Give in own	Shop	Determine	Plan	Select
		words	Use	Develop	Prepare	Validate
		Identify	Utilize	Diagram	Produce	Value
		Interpret	Initiate	Differentiate	Propose	Test
		Locate		Distinguish	Predict	
		Pick		Draw	Reconstruct	
		Report		conclusions	Set-up	
		Restate		Estimate	Synthesize	
		Review		Evaluate	Systematize	
		Recognize		Examine	Devise	
		Select		Experiment		

Typical Course info

Department of XXX Engineering Faculty of Engineering University of XXX (1) Course Code: ххх (2) Course Title: **Engineering Alloys** (3) Course Type: **Departmental (Core Course)** (4) Synopsis: The course focuses upon the processing-structure-property relationships in metals. The course is designed to start with pure metals, examining the role of (i) deformation and (ii) temperature in governing the structure and properties. Later, complexity is added through (iii) chemical additions, i.e., alloying, and the course culminates with detailed discussions of important alloy systems, most notably, Fe-C. Pre-requisite (If any): (5) None (6) References: Structure and Properties of Engineering Alloys, William F. Smith. McGraw-Hill International Editions Materials Sciences and Engineering, An Introduction William D. Callister, Jr. John Wiley & Sons, Inc. Hill Mechanical Metallurgy, George E Dieter, McGraw-Hill

7.	Course	Outcomes	

		D	D	D	D	D	D	D	D	D	D	D	Dolivory	Assessment
	(00)												Denvery	Assessment
	Course outcomes (CO)	0	0	0	9	0	U	U	0	0	U	0		
		1	2	3	4	5	6	7	8	9	1	1		
											0	1		
By	the end of this course, studer	nts v	wil	11 ł	be i	ab	le	to:						
1	Explain the fundamentals												Classroom	Examination/
	of dislocations and describe												instruction, AL/	quiz/ written
	relationship between												CL,	assignment report
	dislocation motion, work													
	hardening and													
	strengthening.													
2	Correlate between	\checkmark											Classroom	Examination/
	microstructure, thermal												instruction ,	quiz/ written
	processing conditions and												Tutorial, AL/ CL,	assignment
	properties of ferrous alloys.												lab sessions	report, lab report
3	Select type of alloying			√									Classroom	Examination/
	additions, thermal												instruction, case	quiz/ written
	processing conditions, etc.												study and AL/CL	assignment report
	for ferrous alloys for													
	specific applications.													
	Overall		$$											

Action words in CO and levels of Bloom's Taxonomy

		Р	Р	Р	Р	Р	Ρ	Р	Р	P	Р	Р	Delivery	Assessment
	Course outcomes (CO)	0	0	0	0	0	0	0	0	0	0	0		
		1	2	3	4	5	6	7	8	9	1	1		
											0	1		
By	the end of this course, studen	nts v	wil	l t	be	ab	le	to:						
1	Explain the fundamentals												Classroom	Examination/
	of dislocations and describe												instruction, AL/	quiz/ written
	relationship between												CL,	assignment report
	dislocation motion, work													
	hardening and													
	strengthening.													
2	Correlate between												Classroom	Examination/
	microstructure, thermal												instruction,	quiz/ written
	processing conditions and												Tutorial, AL/ CL,	assignment
	properties of ferrous alloys.												lab sessions	report, lab report
3	Select type of alloying												Classroom	Examination/
	additions, thermal												instruction, case	quiz/ written
	processing conditions, etc.												study and AL/CL	assignment repor
	for ferrous alloys for													
	specific applications.													
	Overall													

Action	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
word for	Define	Choose	Apply	Analyze	Arrange	Appraise
word for	Identify	Cite examples of	Demonstrate	Appraise	Assemble	Assess
eacn	List	Demonstrate use	Dramatize	Calculate	Collect	Choose
Cognitive	Name	of	Employ	Categorize	Compose	Compare
Levels	Recall	Describe	Generalize	Compare	Construct	Critique
	Recognize	Determine	Illustrate	Conclude	Create	Estimate
	Record	Differentiate	Interpret	Contrast	Design	Evaluate
	Relate	between	Operate	Correlate	Develop	Judge
	Repeat	Discriminate	Operationalize	Criticize	Formulate	Measure
	Underline	Discuss	Practice	Deduce	Manage	Rate
		Explain	Relate	Debate	Modify	Revise
		Express	Schedule	Detect	Organize	Score
		Give in own	Shop	Determine	Plan	Select
		words	Use	Develop	Prepare	Validate
		Identify	Utilize	Diagram	Produce	Value
		Interpret	Initiate	Differentiate	Propose	Test
		Locate		Distinguish	Predict	
		Pick		Draw	Reconstruct	
		Report		conclusions	Set-up	
		Restate		Estimate	Synthesize	
		Review		Evaluate	Systematize	
		Recognize		Examine	Devise	
		Select		Experiment		

COURS			PROGRAMME LEARNING OUTCOMES (PO)												
E	COURSE TITLE	CREDI T	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	P01	PO1		
												0	1		
KXEX1145	Basic Engineering Algebra	2													
KXEX2244	Ordinary Differential Equations	2	\checkmark					√							
KXEX2162	Economy and Finance for Engineers	2	\checkmark		\checkmark	\checkmark	V	V							
KXEX2166	Law and Engineer	2													
KXEX2165	Moral and Ethics in Engineering Profession	2	\checkmark		\checkmark	V	V	V							
KXEX2245	Vector Analysis	2													

MAPPING OF COURSE OUTCOME TO PROGRAMME OUTCOMES

BAETE specification following graduation	ally req ate attri	uires that students acquire the butes:
	a)	Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization as specified in K1 to K4 respectively to the solution of complex engineering problems.
PROGRAM	b)	Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences. (K1 to K4)
OUTCOMES (PO)	c)	Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. (K5)
	d)	Conduct investigations of complex problems using research-based knowledge (K8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
5 M & University N/T Dama 2007	e)	Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations. (K6)

PROGRAM OUTCOMES (PO) contd	f)	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. (K7)
	g)	Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts. (K7)
	h)	Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (K7)
	i)	Function effectively as an individual, and as a member or leader in diverse teams and in multi- disciplinary settings.
	j)	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
	k)	Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
	I)	Recognize the need for, and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change
A. S. M. A. Haseeb. NCE Dept., BUET		25
25		

Major Steps

- 1. Course design
- 2. Course delivery
- 3. Assessment
- 4. Measurement of achievement of CO
- 5. Analysis and plan for further improvement

1. Course design

- Not just copy from overseas Universities
- Feedback from stakeholders: Industry, employers, alumni, teachers, students

2. Course delivery

- Lectures alone are not considered adequate enough
- Student centered learning: Active Learning (AL) in the class, Cooperative Learning (CL), Problem Based Learning (PBL), Project Based Learning

3. Assessment

- Coverage and depth of CO
- All COs must be adequately covered
- Bloom's taxonomy is used to ensure that COs are covered at adequate depth
- Multiple assessment tools: quiz, test, presentation, PBL
- Assessment of questions for coverage of CO

